
EECS 467: Autonomous Robotics Laboratory
Reduce Reuse Recycle Robot (RRRobot)

Sravan Balaji∗, Chenxi Gu†, Jake Johnson‡, and Derek Witcpalek§

University of Michigan, Ann Arbor
{ ∗balajsra, †chenxgu, ‡thejakej, §dwitcpa }@umich.edu

Abstract

In this project, we attempt to simulate the classification,
manipulation, and sorting of items into trash or recycling. The
goal is to explore the challenges involved in separating single
stream waste materials into multiple streams, as is done at
waste management facilities. Workers who are hired to sort
materials in these facilities often leave after a short time,
sometimes within hours of being hired. Robots can help fill
this role by accurately sorting items and reliably operating
for years. We simulate the control of a robotic arm that is
able to classify an image, pick up an object, and place it in
the correct bin to successfully separate a single stream of
waste into a trash and recycling bin. This simulation makes
use of a convolutional neural network to classify images, a
depth camera to generate point clouds that can be used to
determine where the arm should grab, and inverse kinematics
to determine a set of joint positions that will allow our robot
to reach its desired target pose.

Keywords: Convolutional Neural Networks, Inverse Kine-
matics, ROS, Gazebo, ARIAC.

1. Introduction
In recent years, more and more countries have become

aware of the growing issues with waste disposal. Developing
countries have begun to ban garbage imports, which in turn
has caused both these countries, and countries that once relied
on exporting their waste, to reevaluate the their waste disposal
methods. A significant step in garbage processing is garbage
classification. Recyclable and trash are separated such that
materials like paper, glass, plastic can be reused. While it has
been partially done automatically at recycling plants, this work
is still quite labor intensive.

In this project, we aim to simulate the scenario at a
recycling facility where a conveyor belt of items needs to be
separated into trash and recycling. This project contains three
major modules: detection, classification and control. Assume

an RGB-D camera is installed on top of the conveyor belt
which provides color information of an area as well as depth
information. When an object is moving on the conveyor belt,
our system will first detect it using the point cloud calculated
from the depth information, then classify it using a computer
vision model and finally control a robot arm to grasp the
object into the recyclable / trash bin. Our simulated scenario
is similar to this, with a few modifications for simplicity.

This report is organized as follows: In Section 2, we
describe the high-level architecture of the RRRobot system,
how the three major modules communicate with each other
and the software environment where we develop this system.
In Section 3, we discuss how to train a classifier which
separates different materials based on vision information and
its performance. In Section 4, we discuss how to use the point
cloud data from a depth camera to detect the existence of and
estimate a bounding box around an object. In Section 5, we
discuss how to control the end effector of the robot arm to
move towards a desired location with inverse kinematics. In
Section 6, we conclude what we’ve learned and achieved from
this project. Source code, documentation, and videos can be
can be found on the project website.

2. System Architecture
In this section, we first describe the docker environment

we used for easier collaboration and the GEAR environment
where we developed our system. Then we introduce the high-
level architecture of our system and how different modules
communicate with each other.

2.1. Development Environment

Our simulation was implemented in a docker container [1]
running Ubuntu 18.04.4 LTS with ROS Melodic Morenia [2],
Gazebo 9.0.0 [3], and Python 3.6.9 [4]. We used docker to
ensure a consistent development environment as well as to en-
sure that others can run our simulation without worrying about
installing dependencies manually. Instructions for running the
simulation environment can be found on the project website.

1

https://eecs-467-w20-rrrobot-project.github.io/RRRobot/home
https://eecs-467-w20-rrrobot-project.github.io/RRRobot/home


Fig. 1: RRRobot Modified Gazebo Environment for Agile
Robotics 2019 [5]

Fig. 2: Universal Robots UR10 Robotic Arm Degrees-of-
Freedom, reproduced from [6]

2.2. GEAR

To simulate our project, we used the Gazebo Environment
for Agile Robotics (GEAR) [5] shown in Figure 1. GEAR
is a simulation environment used in the Agile Robotics for
Industrial Automation Competition (ARIAC) 2019 [7]. We
chose to use this environment because it contains all of the
components that our project needed. The GEAR environment
is modeled after an industrial setting and includes a conveyor
belt, multiple sensors for detecting and identifying objects,
and robotic arms for manipulating the objects.

We had initially planned on custom making CAD models
that would be imported into our Gazebo environment, but we
found that the time required to implement that would not
improve our end product as compared to what was already
publicly available. Switching to using GEAR allowed us to
focus on implementing the object classification, object detec-
tion, and motion planning components of the project rather
than environmental setup.

The conveyor belt is used to move objects into position
so that they can be detected by the depth camera and picked

up by the arm. The main node sets the conveyor belt power
to 0% when it receives a target grasping pose from the depth
camera node. It sets the conveyor belt power to 100% again
when the arm controller releases an object. We used two
of the bins provided in the GEAR [5] environment to sort
recyclable and trash items. We positioned the depth camera
above the conveyor belt at an angle in order to capture multiple
surfaces of the objects. Positioning the camera directly above
the conveyor belt would have likely sufficed for detecting the
cubes used in our simulation, but the angled position is what
we would use for more complicated object shapes. The arm
used in our simulation is the UR10 industrial robot arm from
Universal Robots [8]. The UR10 (shown in Figure 2) is a 6
DOF arm with a radius of 1.3 meters. The base of the arm
is attached to a linear actuator which allows the arm to move
freely parallel to the conveyor belt.

We decided to use simple color coded cubes to represent
the items that come down the conveyor belt. Green indicates
recyclable and red indicates trash. We had originally planned
on using realistic CAD models of a plastic bottle, cardboard
box, etc. However, we found that using these models made
the gripping process much more challenging, so we instead
opted for simple cubes. Internally, the CV model is being
fed images, such as those seen in Figure 4, that it uses to
classify the items, but the arm only needs to pick up simple
cubes rather than objects with curved surfaces at varying
orientations.

2.3. ROS Nodes Communication

A flow diagram of the interaction between the simulation
environment and our ROS nodes is shown in Figure 3. Five
ROS nodes are used to create, detect and classify objects,
and move the arm to grab items off the conveyor belt. When
the simulation starts, an object is spawned on the conveyor
by the object spawner node. This node publishes a message
with the image name for the CV model to classify. Once the
object reaches the depth-sensing camera, the depth camera
ROS node publishes a desired grasp pose, and the conveyor
belt is stopped. The final piece is the arm controller, which
uses the pickup location from the depth camera node and
the classification from the CV model to move the arm and
correctly sort the item.

The main node (labeled RRRobot in Figure 3) ties together
all these pieces. It controls the flow of the simulation by start-
ing and stopping the conveyor belt, and setting destinations for
the arm as other nodes provide information about the world.
The RRRobot node listens for the item pickup location and
whether it is trash or recyclable. Once this information is
received, the node tells the arm controller where to move the
arm. It also controls the conveyor belt. This involves stopping
the belt when an object is in view, and starting the conveyor
back up when an object is dropped in the bins.

2



Fig. 3: RRRobot Simulation Architecture Model

3. Garbage Classifier1

In the early days, automatic garbage classification made
use of the physical properties of materials. For example, dif-
ferent materials have different densities. When objects move
along a conveyor belt in a recycling plant, with wind blowing
up from the bottom, the lighter objects such as plastic bags
and papers will float into the air while the heavier objects like
metal will stay on the conveyor belt. This is a simple way
to separate objects of different densities. This method is so
effective that recycling plants are still using it today [9].

It wasn’t until recently that people started to use computer
vision techniques to help garbage classification. “Auto-trash”,
[10] built in 2016, is the first garbage classification project
to use computer vision, to our knowledge. When an object is
place upon the top of this container, it will use the camera
that it is equipped with to sort the object into recyclable or
compost, and then rotate its top such that the object falls into
the correct half of the container.

In addition, in 2016, Mindy Yang and Gary Thung [11]
from Stanford collected their own dataset and made it public.
Their dataset consists of images of cardboard, glass, metal,
paper, plastic, and trash, which are targeted for garbage clas-
sification because the first 5 categories in this list are the main
categories used for recycling. They also experimented with
two types of machine learning algorithms, SVM and CNN,
for image classification. For their SVM, the feature vector
of an image is extracted using the SIFT algorithm; for their
CNN, its architecture is similar to AlexNet. Their SVM model

1. Part of the work in this section comes from the previous work
of Chenxi (one of the authors of the report) with Yifan Yang (yi-
fany@umich.edu) and Shaayan Syed (sshaayan@umich.edu) in another
course project.

achieved a test accuracy of 63%, while their CNN model only
achieved a test accuracy of 22%.

In 2018, Cenk Bircanoglu et.al [12] used the dataset built
by Mindy Yang and Gary Thung and experimented with
different data augmentation strategies, model architectures,
and optimizers. They found that fine-tuning a 121 layered
DenseNet allowed it to achieve a test accuracy of 95%. They
also proposed a new architecture called “RecycleNet”, which
could achieve a test accuracy of 81% when learning from
scratch.

Inspired by these previous work, we built a garbage classi-
fier with computer vision techniques.

3.1. Train classifiers

We used the dataset built by Gary Thung and Mindy Yang
from Stanford University in their project [11]. This dataset
consists of 393 images of cardboard, 491 images of glass, 400
images of metal, 584 images of paper, 472 images of plastic,
and 127 images of trash. Figure 4 shows some example images
from this dataset. Each image is in RGB format with a width
of 512 pixels and a height of 384 pixels. We split the dataset
such that the amount of training, validation, and test images
have a ratio of 70:15:15 in accordance with each type of waste.
In addition, we augmented the training data by flipping each
image horizontally and vertically to get two additional images.
We ended up with 5298 images in the training dataset, 398
images in the validation dataset, and 398 images in the test
dataset.

We adapted 3 architectures from MobileNet, ResNet and
InceptionNet. The last few layers for each one were modified
such that the model was also able predict and output the
log probability that an image belonged to each of the six

3



(a) cardboard (b) glass (c) metal (d) paper (e) plastic (f) trash

Fig. 4: Example images in Stanford dataset [11]

categories. These architectures are detailed in our github repo.
Since the models trained on ImageNet are available to the
public, we were able to experiment with the three following
frameworks:

• Pretrain-Finetune: Load the original model trained on
ImageNet and update all the layers on our training
data;

• Pretrain-Freeze: Load the original model trained on
ImageNet. Freeze layers from the original model and
only update the layers we modified on our training
data;

• Learn from scratch: Learn all the layers on our training
data

We experimented with 3 different model architectures, 3
different frameworks and 4 different learning rates {1e-3, 5e-
4, 1e-4, 5e-5}, and ended up with 36 models. We trained each
model for 50 epochs. Our highest test accuracy was 95% and
was achieved by the modified MobileNet and the modified
InceptionNet, both of which had a learning rate of 5e-5 using
the pretrain-finetune framework. Since querying the modified
MobileNet is faster than querying the modified InceptionNet,
we choose the modified MobileNet as our final classifier.

3.2. Evaluate our best classifier in detail

The confusion matrix in Figure 5 details the performance
of our final classifier on the test data set. The labels in the
vertical direction represent ground truth, and the labels in
the horizontal direction represent predictions. The numbers
placed along the diagonal line in the middle indicate wrong
predictions.

We further analyzed the wrong predictions. Out of 20
wrong predictions, 4 images had wrong ground truth (they
were somehow marked with wrong labels by the people who
built this dataset), 10 images were ”tricky”, and 6 images
were ”manageable”. By ”tricky”, we mean that it could be a
little challenging, even for a human being, to correctly classify
the object in the image, either because of the angle at which
the photo was taken, the way the object was illuminated, etc.
Some tricky cases are shown in Figure 6. And by ”manage-
able”, we mean that it should be easy for the average person to
correctly classify the object in the image. Some manageable
cases are shown in Figure 7.

Fig. 5: Confusion matrix on test data from Stanford dataset
[11]

(a) The cardboard is misclas-
sified as paper, perhaps be-
cause of its texture and color-
ing

(b) The glass is misclassified
as metal. This may be due to
its reflection

(c) The plastic is misclassified
as glass, perhaps because of
its reflection as well

(d) The paper is misclassfied
as trash, which could be be-
cause its size is close to that
of a snack pack

Fig. 6: Tricky cases

3.3. Future work to improve the classifier

One approach which could be essential to improve our
classifier is to collect a large and diverse garbage dataset.
There are several issues we noticed in the Stanford dataset.

4



(a) The trash is misclassified
as paper

(b) The paper is misclassified
as cardboard

Fig. 7: Manageable cases

First, most of the images in this dataset had plain, white
backgrounds. Second, the Stanford dataset is not diverse when
it comes to the types of objects it has images of. For example,
the ”glass” images in the training dataset contain only bottles
and the ”metal” images contain either metal bottles or cans.
However, in a real testing scenario, the background color
could be different and ”metal” could contain silverware or
metal tools. This means the performance of our classifier
could drop a lot when applied to a recycle plant. If we can
construct a more diverse dataset in a more extensive way, we
will probably obtain better results on real-world tests.

We should also notice that in real world, it is sometimes
difficult for a human being to correctly classify an object
only based on vision. Instead, human beings usually also rely
on tactile sense. From our experiments, we find that plastic
objects may be confused with glass and that paper may be
confused with trash. This indicates that we might need to
combine the sensation of touch along with vision in order
to build a better waste sorter. Researchers from MIT [13] have
already done something to this extent by creating artificial
fingers with tactile sensors for robots. The robots were then
able to detect whether an object they touched was either paper,
metal, or plastic based on its size and stiffness. They achieved
a test accuracy of 85%. Although this accuracy is not high,
it might help us solve the problem of distinguishing different
types of garbage, such as glass and plastic. A plastic bottle
will undergo a significant change in shape if you put pressure
on it, while a glass bottle will not. The vision model and the
touching model could complement each other.

Right now, our classifier works on the image when there is
only one object to detect. It would be great if it could classify
each object in an image containing multiple objects. To do
this, we would probably want to train a faster R-CNN model
which predicts a bounding box and then classifies each object
in the image that has a bounding box. We did not implement
this feature in this project because the dataset we used did not
contain ground truth about the bounding box. This could be
the future work for a classifier in a real recycle plant.

4. Object Detection
4.1. Depth Camera

Our simulation environment uses a depth camera to gen-
erate point cloud data. This is used to detect when an object
is in position on the conveyor belt and to determine where

Fig. 8: Point Cloud collected by Depth Camera

the arm should grasp the object. To work with the point cloud
data, we used the Point Cloud Library (PCL) [14], which is an
open source library for image and point cloud processing. PCL
provides a method for segmenting a point cloud into multiple
clusters which can be used to identify different objects within
a single point cloud. We used this method to extract the points
corresponding to the object from the rest of the point cloud.

Figure 8 shows the cube on the conveyor belt and the point
cloud captured by the depth camera at two different angles.
As shown in the bottom right point cloud image, the top
surface of the cube is clearly visible as the measured depths
on this surface are smaller than the depths measured around
it, indicating that an object is in frame.

Point cloud data collected from the depth camera must first
be transformed from the camera’s frame into the world frame.
This is done using the ROS transformations package and the
PCL-ROS package, which allows us to easily transform a
point cloud using a transformation defined by a point repre-
senting the position of the frame and a quaternion representing
the orientation of the frame. To detect if an object was in
position on the conveyor belt we approximated the position
of each cluster extracted from the point cloud and checked
if any of the clusters was located within a predetermined
area. Once the object is detected and the conveyor belt is
stopped, the depth camera node estimates a 3-dimensional
bounding box for the object using the maximum and minimum
x, y and z coordinate values in the point cloud as well as
the known height of the conveyor belt. Our simulation uses
highly simplified representations of objects, so this approach
accurately captures the pose of the object on the conveyor
belt. The end effector of the arm uses a vacuum gripper, so
the target pose is directly against the surface of the object.
The depth camera node publishes the target pose so that the
main node can send a command to the arm controller.

4.2. Future work for improved object detection

This simple object localization method works well for
the cubes used in our simulation, but for more complicated

5



shapes a more sophisticated method would be necessary. PCL
includes methods for computing surface normals of point
clouds as well as for cylindrical segmentation, which could
be used to find the surfaces of objects of various shapes.
Our simulation also has only a single object on the conveyor
belt at a time, whereas a realistic recycling plant scenario
would likely have many objects clumped together. Extending
our current project to work with various object shapes and
multiple objects grouped together would be the next steps to
take in making this project applicable in real-world recyclable
sorting environments.

5. Arm Controller
The arm controller is given a pose to grab the object at,

and the location of the bin to drop the object in. It uses inverse
kinematics to find the joint positions required to reach these
locations. We also added two intermediate locations in the
arm’s path so that it avoids all obstacles. In our environment,
there are no objects above about 1 meter, so if we keep the
arm above 1 meter while moving, collisions are very unlikely.
This was a compromise since we weren’t able to get full path-
planning with obstacle avoidance working in MoveIt.

5.1. MoveIt
As suggested in the GEAR wiki, we initially interfaced

with MoveIt [15] via RViz [16]. We were able to use the
GUI to plan and execute motion planning to a desired posi-
tion, while taking into account obstacles. However, when we
attempted to use the C++ MoveIt interface, we encountered
many issues with the provided MoveIt configuration files for
the UR10 robot arm. We found that the linear actuator link that
allows the arm to slide along the rail was being dynamically
added to the model when the simulation started, so we were
unable to find a way to programmatically use MoveIt for
path planning. Our decision to abandon MoveIt proved to
be the best option when we found that others were having
similar issues, but the ARIAC support team would not provide
technical support for MoveIt or the configuration files.

5.2. Kinematics and Dynamics Library
After many issues trying to get the UR10 arm working

with the C++ MoveIt interface, we decided to switch to using
the Orocos Kinematics and Dynamics Library (KDL) [17] for
forward and inverse kinematics. We had experimented with
it prior to using the ARIAC environment, so the transition
wasn’t too difficult.

Our arm controller used the KDL Levenberg-Marquardt
inverse kinematics solver. This is an inverse kinematics solver
that starts from an initial guess pose and uses iterative
gradient-based optimization to find the robot configuration
that will produce the desired end effector pose. This method
converges more quickly than others if the initial guess is
close to a correct configuration, but doesn’t handle arbitrary
initial guesses well [18]. It can be prone to getting stuck in

local minima, and works best when calculating the configu-
rations for a series of poses along a trajectory. We knew the
configuration of the previous point, which was either above
the conveyor belt, or above the bins, so this seemed like a
reasonable method to try.

When using inverse kinematics to solve for the joint
positions required to reach the desired pose, we had issues
with the solver getting stuck in local minima. At first, we
tried increasing the maximum number of iterations used by
the solver, but it still returned errors. We also thought that
changing the tolerated error in the final position and for the
individual joints would help, but because the planner was
getting stuck in a local minimum, these changes didn’t make
a difference. Iterative solvers commonly have problems with
getting stuck in local minima. The best solution we found was
to adjust the initial conditions by a random amount in order
to help the arm avoid these minima. If the state guess we pass
into the inverse kinematics solver is far enough from the local
minimum, a valid solution is found.

In our final solution, the arm controller tries to calculate
the joint positions to reach the destination using the current
configuration as an initial ”guess” for the inverse kinematics
solver. If this fails, it tries again with +/-0.1 radian adjustments
randomly applied to each of the joints. This process repeats up
to a maximum number of attempts and then the arm controller
gives up on reaching that point, assuming that it is outside of
the robot configuration space.

5.3. Gripper
We used the vacuum gripper plugin in Gazebo. This end

effector allows the robot to create fixed links to dynamically
attach to, and manipulate objects in the environment. In initial
testing of the plugin, we noticed that it was very temperamen-
tal, requiring the end effector link frame to be well lined up
with the frame of the object. As you can see in Figure 9, some
gripper poses attached to the object while very similar poses
didn’t. The gripper seemed to have better performance when
grabbing an object off of a fixed surface than trying to attach
the gripper to a floating object.

In order to ensure the gripper attached to the desired object,
we first moved the arm end effector to a position slightly
above the object. The gripper was slowly lowered until the
end effector attached to the object. This ensured that objects
weren’t tipped over or otherwise disturbed while we grabbed
them.

5.4. Future Work
If we had additional time to work on this project, there are

a couple of key points that could use improvement. The main
issue that comes to mind is motion planning with obstacle
avoidance. Currently, KDL does not take into account the
presence of other objects in the environment when determin-
ing the joint positions that will achieve the desired end effector
pose. MoveIt does provide this capability, but as mentioned,
we were unable to get that working. As shown in our project’s

6



(a) able to attach (b) not able to attach (c) not able to attach

Fig. 9: The gripper needed to be well-aligned to grab objects

video, the arm hits the depth camera that is above the conveyor
belt, but eventually manages to get past it when picking up the
cubes. We could get around this collision issue by specifying
different intermediate points in the robot arm trajectory that
are out of the way of the camera, or we can simply disable
collisions on the camera model in Gazebo. Additionally, we
could have improved the intermediate poses used in motion
planning. As shown in the project video, the joint position
calculated by inverse kinematics often requires some joints to
rotate nearly 360. If we choose the intermediate poses more
carefully, perhaps IK would rotate the joints fewer degrees in
the opposite direction to achieve the same position.

We would have also liked to improve the gripping capa-
bility of the robot arm. As shown in Figure 9, the gripper
requires very close alignment with objects such as the soda
can. We decided to use cubes to represent the items as this
had a much higher likelihood of success, but it would have
been interesting to explore how the suction end effector could
work for objects with curved surfaces and facing different
orientations (e.g. vertically vs horizontally placed on conveyor
belt).

6. Conclusion
In this project, we simulated the scenario at a recycling

plant where a conveyor belt of items needs to be separated into
trash and recycling. We address this problem with three major
modules: detection, classification and control. The detection
module detects the existence of an object in the designated
area on the conveyor belt; the classification module, which
uses convolutional neural networks, classifies the object into
trash or recycling. The control module manipulates the robot
arm to grasp the object and then puts it into the correct
bin. Through our simulation based approach to our imple-
mentation, we gained hands-on experience about the methods
used in classification of images, control of robot arms, and
manipulation of objects in 3D space. We also gained expe-
rience with ROS, Gazebo, and KDL that will aid us in our
future work. Although this project was ultimately done in a
simulation environment, instead of our initial plan to use a
hardware-based approach on a real robot, the experience of

implementing this project is still useful for building a real
robot system in the future.

7. Acknowledgments
We would like to recognize the course staff of EECS

467 for their help this semester. Professor Chad Jenk-
ins (ocj@umich.edu), Graduate Student Instructor Xiaotong
Chen (cxt@umich.edu), and Graduate Student Instructor Jana
Pavlasek (pavlasek@umich.edu) were instrumental in helping
us learn many robotics concepts through lectures and hands-on
lab projects. Due to COVID-19, Our project transitioned from
a heavily hardware based to a heavily software and simulation
based approach once classes became remote. With the help
of the course staff, we were able to make the best of an
unfortunate situation.

Additionally, we would like to recognize our fellow class-
mates in EECS 467 who voluntarily offered their help when
students had questions about lecture, labs, projects, and any-
thing else. Without them, this project and course as a whole
would not have been as fun and engaging as it was.

References
[1] “Docker.” [Online]. Available: https://www.docker.com/
[2] OSRF, “Robot operating system.” [Online]. Available: https:

//www.ros.org/
[3] ——, “Gazebo.” [Online]. Available: https://www.gazebosim.org/
[4] “Python.” [Online]. Available: https://www.python.org/
[5] OSRF, “Gazebo environment for agile robotics.” [Online].

Available: http://gazebosim.org/ariac
[6] A. Topalidou-Kyniazopoulou, “Motion planning strategy for

a 6-dofs robotic arm in a controlled environment.”
[Online]. Available: https://www.ais.uni-bonn.de/theses/Angeliki
Topalidou-Kyniazopoulou Master Thesis 07 2017.pdf

[7] NIST, “Agile robotics for industrial automa-
tion competition,” Apr 2020. [Online]. Avail-
able: https://www.nist.gov/el/intelligent-systems-division-73500/
agile-robotics-industrial-automation-competition

[8] “Collaborative robotic automation: Cobots from universal robots.”
[Online]. Available: https://www.universal-robots.com/

[9] L. Ioannou and M. Petrova, “America is drowning in garbage. now
robots are being put on duty to help solve the recycling crisis,”
Jul 2019. [Online]. Available: https://www.cnbc.com/2019/07/26/
meet-the-robots-being-used-to-help-solve-americas-recycling-crisis.
html

7

mailto:ocj@umich.edu
mailto:cxt@umich.edu
mailto:pavlasek@umich.edu
https://www.docker.com/
https://www.ros.org/
https://www.ros.org/
https://www.gazebosim.org/
https://www.python.org/
http://gazebosim.org/ariac
https://www.ais.uni-bonn.de/theses/Angeliki_Topalidou-Kyniazopoulou_Master_Thesis_07_2017.pdf
https://www.ais.uni-bonn.de/theses/Angeliki_Topalidou-Kyniazopoulou_Master_Thesis_07_2017.pdf
https://www.nist.gov/el/intelligent-systems-division-73500/agile-robotics-industrial-automation-competition
https://www.nist.gov/el/intelligent-systems-division-73500/agile-robotics-industrial-automation-competition
https://www.universal-robots.com/
https://www.cnbc.com/2019/07/26/meet-the-robots-being-used-to-help-solve-americas-recycling-crisis.html
https://www.cnbc.com/2019/07/26/meet-the-robots-being-used-to-help-solve-americas-recycling-crisis.html
https://www.cnbc.com/2019/07/26/meet-the-robots-being-used-to-help-solve-americas-recycling-crisis.html


[10] J. Donovan, “Auto-trash sorts garbage automatically
at the techcrunch disrupt hackathon,” Sep 2016.
[Online]. Available: https://techcrunch.com/2016/09/13/
auto-trash-sorts-garbage-automatically-at-the-techcrunch-disrupt-hackathon/

[11] M. Yang and G. Thung, “Classification of trash for recyclability
status,” CS229 Project Report, vol. 2016, 2016.

[12] C. Bircanoğlu, M. Atay, F. Beşer, Ö. Genç, and M. A. Kızrak, “Re-
cyclenet: Intelligent waste sorting using deep neural networks,” in
2018 Innovations in Intelligent Systems and Applications (INISTA).
IEEE, 2018, pp. 1–7.

[13] A. Conner-Simons, “Robots that can sort recycling,”
Apr 2019. [Online]. Available: http://news.mit.edu/2019/
mit-robots-can-sort-recycling-0416

[14] “Pcl - point cloud library (pcl).” [Online]. Available: http:
//pointclouds.org/

[15] PickNik, “Moveit motion planning framework.” [Online]. Available:
https://moveit.ros.org/

[16] D. Hershberger, D. Gossow, and J. Faust, “Rviz.” [Online].
Available: http://wiki.ros.org/rviz

[17] Orocos, “Orocos kinematics and dynamics.” [Online]. Available:
https://www.orocos.org/kdl

[18] “Inverse kinematics algorithms.” [Online]. Avail-
able: https://www.mathworks.com/help/robotics/ug/
inverse-kinematics-algorithms.html

8

https://techcrunch.com/2016/09/13/auto-trash-sorts-garbage-automatically-at-the-techcrunch-disrupt-hackathon/
https://techcrunch.com/2016/09/13/auto-trash-sorts-garbage-automatically-at-the-techcrunch-disrupt-hackathon/
http://news.mit.edu/2019/mit-robots-can-sort-recycling-0416
http://news.mit.edu/2019/mit-robots-can-sort-recycling-0416
http://pointclouds.org/
http://pointclouds.org/
https://moveit.ros.org/
http://wiki.ros.org/rviz
https://www.orocos.org/kdl
https://www.mathworks.com/help/robotics/ug/inverse-kinematics-algorithms.html
https://www.mathworks.com/help/robotics/ug/inverse-kinematics-algorithms.html

	. Introduction
	. System Architecture
	. Development Environment
	. GEAR
	. ROS Nodes Communication

	. Garbage ClassifierPart of the work in this section comes from the previous work of Chenxi (one of the authors of the report) with Yifan Yang (yifany@umich.edu) and Shaayan Syed (sshaayan@umich.edu) in another course project.
	. Train classifiers
	. Evaluate our best classifier in detail
	. Future work to improve the classifier

	. Object Detection
	. Depth Camera
	. Future work for improved object detection

	. Arm Controller
	. MoveIt
	. Kinematics and Dynamics Library
	. Gripper
	. Future Work

	. Conclusion
	. Acknowledgments
	References

